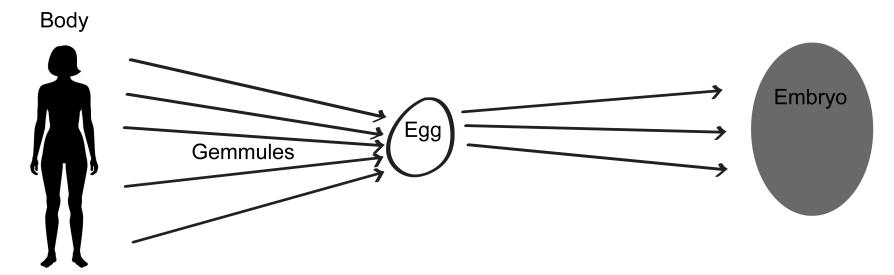
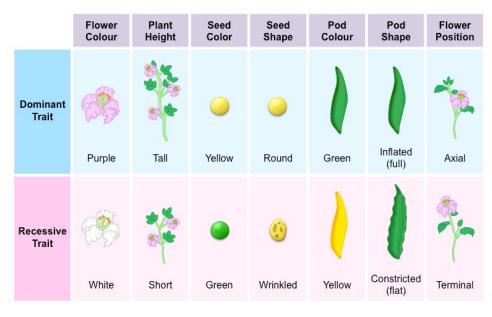

Mendelism

Evolution and the mechanism of heredity



Charles Darwin and the nature of variation:
Where does the feedstock for selection come from?

Two types of variation:


- Continuous variation
- Discontinuous variation

Pangenesis (adapted from Hippocrates)

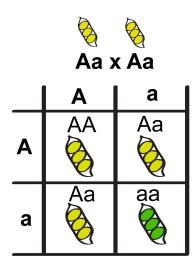
"Experiments on Plant Hybridization" 1866

(Bioninja.com)

Summary of Mendel's findings:

- Uniformity of F1 (dominance)
- 3:1 ratio of dominant: recessive
 - 1/4 purebred dominant, 1/4 purebred recessive, 2/4 hybrid
 - hybrid x hybrid crosses give 3:1, recessive x hybrid give 1:1
- Two different traits will segregate independently

Law of Segregation

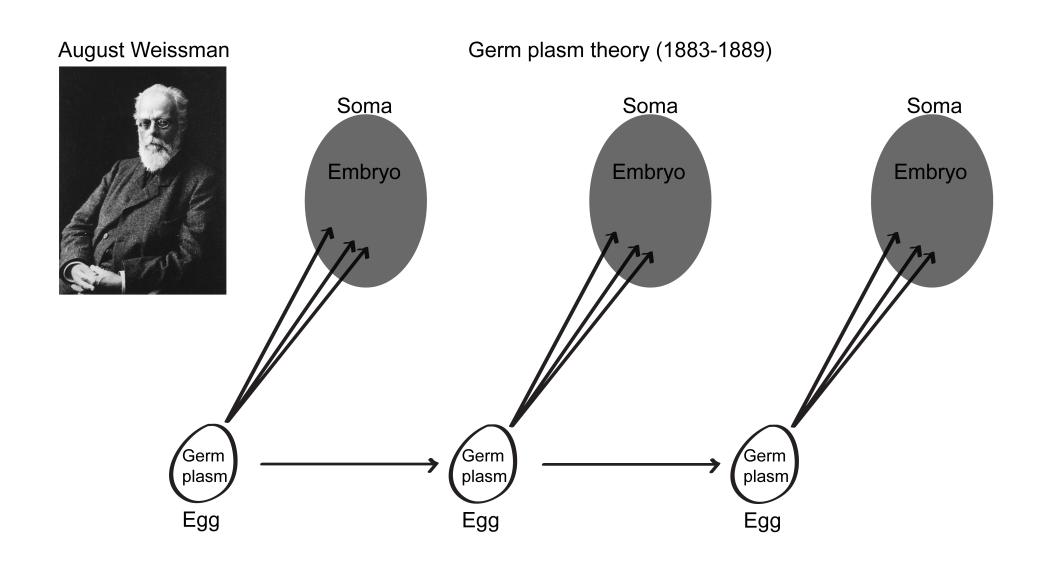

Law of Independent Assortment

Mendel-Fisher Controversy

Chi-squared test (1900)

$$\sum \frac{\text{(Observed - Expected)}^2}{\text{Expected}} = \chi^2$$

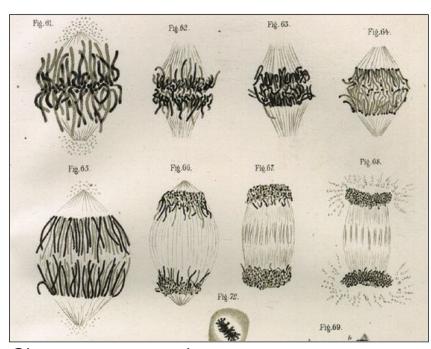
Degrees of freedom (df) = categories -1



				Dev.		Dev.
				from	Prob.	÷
Source	Yellow	Green	Total	3 in 4	Error	P.E.
Mendel, 1866	6,022	2,001	8,023	+ .0024	± .0130	.18
Correns, 1900	1,394	453	1,847	+ .0189	$\pm .0272$.70
Tschermak, 1900	3,580	1,190	4,770	+ .0021	$\pm .0169$.12
Hurst, 1904	1,310	445	1,775	0142	$\pm .0279$.51
Bateson, 1905	11,902	3,903	15,806	+ .0123	$\pm .0093$	1.32
Lock, 1905	1,438	514	1,952	0533	$\pm .0264$	2.04
Darbishire, 1909	109,060	36,186	145,246	+ .0035	$\pm .0030$	1.16
Winge, 1924	19,195	6,553	25,748	0180	± .0125	1.44
Total	153,902	51,245	205,147	+ .0008	± .0038	.21

Mendel-Fisher Controversy

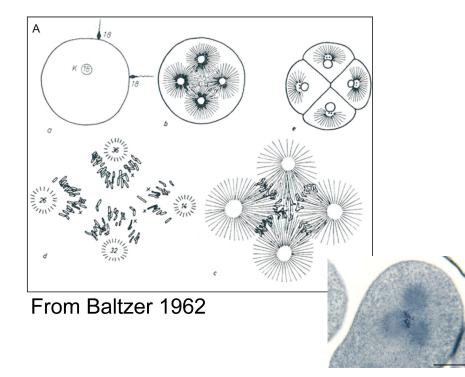
					Obs.	freq.	Theor. ratio
	Trait	" A "	"a"	n	n" _A "	n"a"	"A" : "a"
	Seed shape	round	wrinkled	7324	5474	1850	3:1
	Seed color	yellow	green	8023	6022	2001	3:1
	Flower color	purple	white	929	705	224	3:1
F_2	Pod shape	inflated	constricted	1181	882	299	3:1
	Pod color	yellow	green	580	428	152	3:1
	Flower position	axial	terminal	858	651	207	3:1
	Stem length	long	short	1064	787	277	3:1
	Trait	\boldsymbol{A}	a	n	n_{Aa}	n_{AA}	Aa:AA
	Seed shape	round	wrinkled	565	372	193	2:1
	Seed color	yellow	green	519	353	166	2:1
	Flower color	purple	white	100	64	36	2:1
(F_3)	Pod shape	inflated	constricted	100	71	29	2:1
(- /	Pod color	yellow	green	100	60	40	2:1
	Flower position	axial	terminal	100	67	33	2:1
	Stem length	long	short	100	72	28	2:1
	Pod color (rep.)	yellow	green	100	65	35	2:1


Germ plasm theory of heredity

Chromosome theory

Technological Advances:

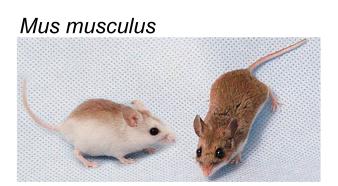
- Microtome
- Dyes
- Organisms for study:
 - Ascaris
 - Salamander



Chromosomes and mitotic phases (Flemming 1882)

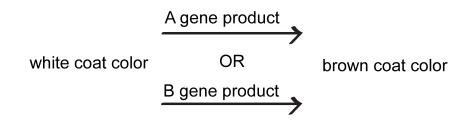
Theoretical Advances:

1883 Roux argues structure of chromosomes and their divisions argue them as bearers of heredity


- Chromosomes occur in pairs (1901-2)
 - Fertilized egg receives equal chromosomes from each parent
 - Meiotic divisions halve chromosome number
- Boveri polyspermy experiments (1902):

Rediscovery of Mendel ~1900

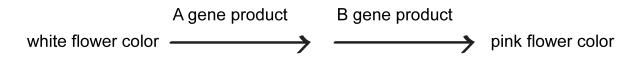
- Correns: Maize
- De Vries : several plants "This memoir, very beautiful for its time, has been misunderstood and then forgotten."
- Tshermak: Peas


Two genes, parallel redundant pathways

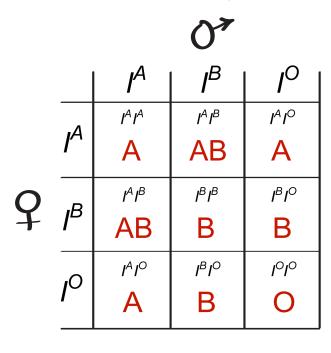
	AB	Ab	аВ	ab
	AABB	AABb	AaBB	AaBb
AB —	~	~	4	~
A 1-	AABb	AAbb	AaBb	Aabb
Ab	~	~	~	~
	AaBB	AaBb	aaBB	aaBb
aB 	~	~	4	~
- la	AaBb	Aabb	aaBb	aabb
ab 	~		~	∽∆ 6

Two genes, redundant parallel pathways = 15 : 1 phenotypic ratio

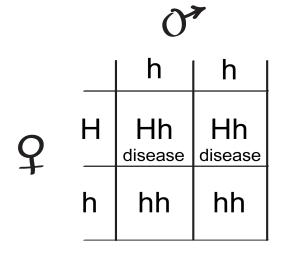
Two genes, one pathway


AaBb x AaBb

Sweet pea (Lathyrus odoratus)


	AB	Ab	аВ	ab
	AABB	AABb	AaBB	AaBb
AB	Ø	V	W	W
	AABb	AAbb	AaBb	Aabb
Ab	6	6	W	80
	AaBB	AaBb	aaBB	aaBb
аВ	V	Ø	60	Ø
	AaBb	Aabb	aaBb	aabb
ab	V	80	Ø	80

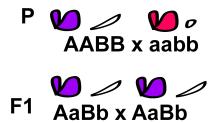
Two genes, one pathway = 9 : 7 phenotypic ratio



Mendelian inheritance in humans

Blood type

Huntington's disease


Genetics terminology needed

- Gene
- Genotype/Phenotype
- Allelomorph (allele)
- Homozygote/Heterozygote

Other non-Mendelian ratios

Sweet pea (Lathyrus odoratus)

F2	expected	observed
	1199	1528
V 0	400	106
	400	117
6	113	381
totals	2132	2132