Molecular Biology/The Coding Problem Unification of Genetics and Biochemistry

What is the physical basis of heredity? What are chromosomes made of?

- 1869-1871 Friedrich Miescher studying nuclei of pus cells isolates DNA describes "nuclein"
- 1889 Richard Altmann shows the substance can be split into protein and nucleic acid
- 1895 Edmund Beecher Wilson writes:
 - Now chromatin is known to be closely similar to, if not identical with, a substance known as nuclein – which analysis shows to be a tolerably definite compound composed of nucleic acid (a complex organic compound rich in phosphorus) and albumin [protein]. And thus we reach the remarkable conclusion that inheritance may, perhaps, be effected by the physical transmission of a particular chemical compound from parent to offspring.

Bacterial transformation

DNA is the heredity molecule

Avery et al. 1944

"What Is Life?" The physical Aspect of the Living Cell

- Published in 1944- how can events that take place within an organism be accounted for by physics and chemistry?
- Organisms evade the 2nd law of thermodynamics and exhibit "negative entropy"
 - Must have a way to capture and store information
- Introduced the idea of an "aperiodic crystal" that could contain genetic information in its configuration of covalent bonds
 - "Code script"
- Refers to Muller's X-ray data (via Delbruck) to estimate the size of a gene

One Gene One Enzyme

Substance required for growth	Culture number	Treatment	References
Thiamin	1,090*	X-ray	Beadle and Tatum, 1941; Tatum and Bell, 1945
	9,185	X-ray	Tatum and Bell, 1945
	17,084	X-ray	Tatum and Bell, 1945
	50,005	Ultraviolet	Houlahan and Mitchell, unpublished
	56,501	X-ray	Tatum and Bell, 1945
Thiazole	18,558	X-ray	Tatum and Bell, 1945
Riboflavin	51,602	Ultraviolet	Mitchell and Houlahan, 1945
Pvridoxin	299*	X-ray	Beadle and Tatum, 1941; Stokes et al., 1943
Nicotinic acid	3,416	X-ray	Beadle and Coonradt, 1944; Bonner and Beadle, unpublished
	4,540	X-ray	Beadle and Coonradt, 1944; Bonner and Beadle, unpublished
	39,401	Ultraviolet	Bonner and Beadle, unpublished
Pantothenic acid	5,531	X-rav	Tatum, 1944
	34.556R	Ultraviolet	This paper
<i>n</i> -Aminobenzoic acid	1,633	X-rav	Tatum and Beadle, 1942: Thompson et al., 1943
Inositol	37,101	Ultraviolet	Beadle, 1944
1	37.401R	Ultraviolet	Beadle, 1944
	46.316R	Ultraviolet	Beadle, 1944
	46.802B	Ultraviolet	Beadle, 1944
	64.001 R	Ultraviolet	Beadle, 1944
Choline	34.486	Ultraviolet	Horowitz and Beadle 1943: Horowitz et al. 1945
Chonne	34.542R	Ultraviolet	This namer
	37 903B	Ultraviolet	This paper
	47 904	Ultraviolet	Horowitz et al 1945
	66 210B	Ultraviolet	This paper
Ornithing	91 509	Y_ray	Srb and Horowitz 1044
Ormunne	21,002	X-ray X-ray	Srb and Horowitz, 1944
	20 007	Illtraviolet	Srb and Horowitz, 1944
	23,337	Ultraviolet	Srb and Horowitz, 1944
Citmulling	34,103	Ultraviolet	Srb and Horowitz, 1944
Citruinne	30,330 99 440	Ultraviolet	Srb and Horowitz, 1944
A mulmin a	33, 44 % 96 709	Ultraviolet	Srb and Horowitz, 1944
Arginine	30,703	Vitraviolet	Demonstrate 1049
Isoleucine, valine	10,117	A-ray	Bonner et al., 1943
Leucine	33,757	Ultraviolet	Regnery, 1944; Ryan and Brand, 1944
Lysine	4,343	A-ray N	Doermann, 1944
Methionine	4,894	X-ray	Horowitz et al., 1945; Buss, 1944
Frome	21,803	A-ray	florowitz et al., 1945; Bonner, unpublished
Anthranilic acid	40,008	Ultraviolet	Tatum et al., 1944; Tatum and Bonner, 1944
Indole	10,575	X-ray	Tatum et al., 1944; Tatum and Bonner, 1944
Valme	33,050	Ultraviolet	Horowitz et al., 1945; this paper
Adenine	3,254	X-ray	Pierce and Loring, in press
Cytidylic acid	H263*	X-ray	Loring and Pierce, 1944
	1,298	X-ray	Loring and Pierce, 1944
	45,203R	Ultraviolet	Loring and Pierce, 1944
Nitrite or other re- duced nitrogen	14,789	X-ray	Horowitz et al., 1945

- UV Octad ascus

imes wild type

Mutagenesis:

- X-ray

Conjugation Mapping

Lederburg and Tatum, 1946

TABLE 2 Relative proportions of various nutritional cell types in a mixed culture of $B-\phi-C-T+L+B_1+V_1$, and $B+\phi+C+T-L-B_1-V_1$.							
TYPE	NUMBER OF THIS TYPE ISOLATED	NUMBER OF PROTOTROPHS	BATIO OF THIS TYPE TO FROTOTROPHS	REMARKS			
$\frac{1}{B-\phi-C-T+L+B_1+V_1^s}$	(Parental ty	pe. Presenti	n large excess)				
$B+\phi+C+T-L-B_1-V_1^r$	(Parental ty	pe. Present i	n large excess)				
$B+\phi+C+T+L+B_1+$	86		1.00	Prototrophs			
$B+\phi+C+T+L+B_1-$	36	37	0.97	Thiamineless			
$B+\phi+C+T-L+B_1+$	2	31	0.06	Threonineless			
$B+\phi+C+T+L-B_1+$.4	55	0.07	Leucineless			
$B-\phi+C+T+L+B_1+$	5	56	0.09	Biotinless			
$B+\phi-C+T+L+B_1+$	1	52	0.02	Phenylalanineless			
$B+\phi+C-T+L+B_1+$	1	19	0.05	Cystineless			
B+++C+T+L-B1-	3	16	0.19	Possible single-re- version type			
B- \$ -C+T+L+B ₁ +	2	41	0.05	Possible single-re- version type			
$B-\phi+C+T+L+B_1-t$	3	28	0.11				
$B-\phi+C+T-L+B_1+t$	(Isolated in	n a similar	experiment)				
$B-\phi+C+T+L-B_1+t$	(Isolated in	n a similar o	experiment)				

* These figures do not include results of tests of virus resistance. Of 49 prototrophs tested, 20 (41%) were resistant. Seven out of 20 thiamineless (35%) were resistant. † It should be noted that these types represent double-requirement recombination types.

Conjugation mapping by interrupted mating Adapted from Wollman, Jacob, Hayes, 1956 (image source what-when-how.com)

Wollman and Jacob 1954, 1957

Tatum and Lederburg, 1947

How are genes regulated? The lac operon

		β-gal act	tivity	
Two E. coli strains:	Experiments:	w/	w/o	
- <i>Str^s, Hfr</i> donor cell		lactose	lactose	inducibility
- <i>Str^R, F⁻</i> recipient cell	Z ⁺ , I ⁺ ,O ⁺ → Z ⁻ , I ⁻ ,O ⁺	+	-	ind
Structural genes:				
<i>lacZ</i> (encodes β-galactosidase) mutants: Z ⁺ .Z ⁻	Z⁻, I⁻,O ⁺ → Z ⁺ , I ⁺ ,O ⁺	+	-	ind
<i>lacY</i> (encodes β-galactoside permease) mutants: Y ⁺ ,Y ⁻	Z⁻, I ^S ,O⁻ → Z⁺, I⁺,O⁺	-	-	unind
<i>lacA</i> (encodes β-galactoside transacetylase) mutants: A ⁺ ,A ⁻	Z ⁺ , I ⁺ ,O ^C → Z ⁻ , I ⁺ ,O ⁺	+	+	const
Regulator genes: Z ⁺ ,	Y⁻ I⁺,O ^C → Z⁻, Y⁺,I⁺O⁺			
<i>lacI</i> (encodes lactose repressor) mutants: I ⁺ ,I ⁻ ,I ^{-D} , I ^S <i>lacO</i> (operator sequence) mutants: O ⁺ , O ^c				

Key findings on the way to coding

- Hershey and Chase 1952
 - infected bacteria with labeled phage
 - labeled sulfur did not enter the cell
 - labeled phosphorus did enter the cell
- Watson/Crick/Franklin/Wilkins 1953
 - Double Helix structure of DNA
 - Chargaff's rules (A = T and G = C)
- Crick develops "central dogma" ~1956

Cell-free translation synthesis system

THE DEPENDENCE OF CELL- FREE PROTEIN SYNTHESIS IN E. COLI UPON NATURALLY OCCURRING OR SYNTHETIC POLYRIBONUCLEOTIDES

BY MARSHALL W. NIRENBERG AND J. HEINRICH MATTHAEI*

NATIONAL INSTITUTES OF HEALTH, BETHESDA, MARYLAND

Communicated by Joseph E. Smadel, August 3, 1961

What's in the buffer?

- 100 mM Tris pH 7.8
- 10 mM Magnesium acetate
- 50 mM KCI
- 6 mM BME
- 1mM ATP
- 5 mM PEP
- Pyruvate kinase
- 19 L-amino acids (- valine)
- 0.03 each GTP, CTP, UTP
- C¹⁴ L-valine
- Various extract fractions

Effects of 'soluble' and 'ribosomal' RNA

FIG 1.—Stimulation of amino acid incorporation into protein by $E. \ coli$ soluble RNA. Composition of reaction mixtures is specified in Table 1. Samples were incubated at 35° for 20 min. Reaction mixtures contained 4.4 mg. of Incubated-S-30 protein.

F1G. 2.—Stimulation of amino acid incorporation into protein by $E.\ coli$ ribosomal RNA in the presence of soluble RNA. Composition of reaction mixtures is specified in Table 1. Samples were incubated at 35° for 20 min. Reaction mixtures contained 4.4 mg of Incubated-S-30 protein and 1.0 mg $E.\ coli$ soluble RNA.

CODING!!! PolyU encodes poly-Phenylalanine

FIG. 6.—Stimulation of U-C¹⁴-L-phenylalanine incorporation by polyuridylic acid. without polyuridylic acid; \blacktriangle 10 µg polyuridylic acid added. The components of the reaction mixtures and the incubation conditions are given in Table 1. 0.024 µmole U-C¹⁴-L-phenylalanine (~500,000 counts/min) and 2.3 mg Incubated-S-30 protein were added/ml of reaction mixture.

PolyU is really specific for incorporation of phenylalanine

TABLE 8

SPECIFICITY OF AMINO ACID INCORPORATION STIMULATED BY POLYURIDYLIC ACID

Experi- ment no.	C14-amino acids present	Additions	Counts/min/mg protein
1	Phenylalanine	Deproteinized at zero time None + 10 μ g polyuridylic acid	25 68 38,300
2	Glycine, alanine, serine, aspartic acid, glutamic acid	Deproteinized at zero time None + 10 μ g polyuridylic acid	17 20 33
3	Leucine, isoleucine, threonine, methionine, arginine, histidine, lysine, tyrosine, tryptophan, proline, valine	Deproteinized at zero time None $+ 10 \ \mu g$ polyuridylic acid	73 276 899
4	S ³⁶ -cysteine	Deproteinized at zero time None + 10 μ g polyuridylic acid	6 95 113

Components of the reaction mixtures are presented in Table 1. The unlabeled amino acid mixture was omitted. 0.015 μ M of each labeled amino acid was used. The specific activities of the labeled amino acids are present in the *Methods and Materials* section. 2.3 mg of protein of preincubated S-30 enzyme fraction were added to each reaction mixture. All samples were incubated at 35° for 30 min.

Deciphering the Triplet Code

- Benzer (1955) Fine structure of a gene
 - rll mutants of T4 phage
- Crick, Brenner et al., 1961 lay out evidence for a non-overlapping triplet
- Khorana works out how to chemically synthesize oligonucleotides
- Nirenberg and Leder
 - Used short synthetic triplet RNAs
 - By a ribosome binding assay, they could determine which aa-charged tRNAs associated with each triplet